## Archiving in Minnesota: System Model and Implementation

Prepared for Workshop 131, TRB 2003

#### Dr. Taek Mu Kwon

Transportation Data Research Laboratory
Northland Advanced Transportation Systems Research Laboratories
Department of Electrical and Computer Engineering

### Outline

- TDRL Introduction
- Centralization of Data
- Data hierarchies
- TDRL archive structure
- Conclusion

## Transportation Data Research Laboratory (TDRL)

- TDRL is a part of NATSRL along with ASRL (Advanced Sensor Research Laboratory) at the University of Minnesota Duluth.
- Established to provide on-line ITS data resources for Minnesota
- TDRL focuses on research issues concerning large-scaled transportation data.









# TDRL Data Model: Distributed Computing Model

- Centralization of data
- Decentralization (distribution) of computing

## Advantages of Centralization of Data

- Efficient single point management
- Unified data format
- Consistent version control
- Large scale data warehousing by experts
- Efficient archiving and sharing
- Large scale data analysis

# Advantages of Centralization of Data, Cont.

- Minimization of redundant efforts
- Efficient data integration and organization
- Secure archives (file backup, UPS, firewall)
- Easy cross reference and analysis
- Minimization of confusion in data
- Single point unified data quality control
- Advanced data application developments

# Advantages of Centralization of Data, Cont.

- Easy and cheaper to upgrade computers
- Easy to maintain new versions of software
- Maximize data sharing among departments, public, and private sectors
- Easy to obtain user feedback and analyze
- Specialize data help
- Easy access of data

## On-Line Data Source/Supply



## Large Scaled ITS Data Archiving

- Centralize it (It should never be tried by individuals using their desktop PCs.)
- Allocate financial, material, and human resources
- Start with a strong commitment: Archiving can never be stopped, if started.
- Analyze data characteristics and all logistics before archiving

### Data Hierarchies

#### Spatial Hierarchy





.

### Data Hierarchies, Cont

Temporal Hierarchy





.

### Data Hierarchies, Cont

#### Computational Hierarchy





•

## TDRL Archive Hierarchy Model



## Raw Data Archiving

- Most important and critical step
- Collect data at the smallest time scale (highest sampling rate) as possible
- Try to achieve never fail robustness; realtime data can never be reproduced once it is lost. Called Write Once Read Many (WORM) data

## **Archiving Choices**

- Binary (or Text) Zip Compressed Files
- CDF, HDF
- RDBMS

## Desirable Properties of ITS Data Archive

- Small Size
- Fast Retrieval
- Portable Between Different OS
- Low Initial Investment and Maintenance Cost
- Metadata Capability
- Open Standard

### Common Data Format (CDF)

- Developed for NASA Climate Data System at National Space Center Data Center
- Self-describing data abstraction for the storage and manipulation of multi-dimensional data (metadata)
- Transparent data format
- Transparent data compression
- Efficient sparse record handling
- Platform Independent
- API available in C, FORTRAN, Java, and Pearl

### Conclusions

- Once archiving is started, it can never be stopped or failed. You must have a robust plan.
- Before starting archiving ITS data, every possible scenario must be reviewed
- Archiving data models need further study
- Large scaled data archiving is a challenging task requiring resources. It should not be considered as light tasks